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Introduction 

This paper describes a moment method formulation for calculating the pickup and 
kicker impedances of a stochastic cooling waveguide structure. A schematic of the 
waveguide pickup is shown in Figure I. 

Coax-Waveguide Adapter 

Beam 
Pipe 

Figure 1. Schematic ofa stochastic cooling waveguide pickuplkicker. 

Slots carved in a waveguide wall will slow down the phase velocity of a wave in 
the waveguide. The reduction in phase velocity is a function of the slot length, width, and 
the spacing between slots. The coupling of the slots to the beam is proportional to the slot 
length. When the reduced phase velocity of the waveguide matches the beam velocity, the 
coupling of the slots will add constructively. In this slow-wave mode, the gain of the 
array is proportional to the number of slots and the bandwidth of the array is inversely 
proportional to the number of slots. 

Finite element methods for are poorly suited for solving electromagnetic problems 
with thin wall apertures. The thin wall causes the electromagnetic field pattern to vary 
rapidly in the vicinity of the aperture. For finite elements, this would require a fine mesh 
around the apertures resulting in very large matrices to invert. Also, finite elements yield 
the solution for the electromagnetic field everywhere in the problem. To calculate pickup 
and kicker impedances, the electromagnetic field has to be known only at the slots or 
along the beam path. 
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- For these reasons, a moment method approach will be used for calculating the 
pickup and kicker impedances. 

Geometry of the Problem 
The geometry of the problem is shown in Figures 2 and 3. Two regions (Regions I 

& II) are separated by a conducting screens in the X-Z plane. These regions may have 
different dielectric constants or backing plate configurations. The beam travels in the z 
direction somewhere in Region I. The two regions are connected by a hole or aperture in 
the screen. The purpose of the moment method program is to find the tangential electric 
and magnetic fields in this aperture. 

Kicker Input Pickup Output 

Kicker Wave ._............. 
.................... Pickup Wave -"............ 

Beam .. . 

----------------------~-y-~---------~~--------
___S.lot ___ 

Region IT 

Kjcker Input Pickup Output 

Figure 2. Side view ofa stochastic cooling waveguide pickuplkicker 

Region IT 

Beam 

______~~___~__ 1C~____ 

Slot 

Region IT 

Figure 3. Head-on view of stochastic cooling waveguide pickup/kicker 
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Figure 4. Decomposition ofan off-center beam into the sum and difference modes. 

Electric Boundary = difference mode 

Magnetic Boundarv =sum mode
···......··........·......···..y~··f····........·..·..·....·..···· .... · 


Beam .. 2 
___Slot ___ 

Pickup Wave -.-.--.~ 

Pickup Termination Pickup Output 

Region II 

Figure 5. Side-view of~ of the pickup after symmetry decomposition 

Electric Boundary =difference mode 

Mal!netic Boundarv =sum mode 


.!.!L 
2 

Figure 6. Head-on view of~ ofthe pickup after symmetry decomposition. 

The problem can be divided into sum and difference modes as shown in Figure 4. 
The sum and difference modes will be used for momentum and transverse cooling 
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structures, respectively. For the sum mode, the magnetic field component parallel to the 
x-z plane at the center of the structure is zero. The x-z plane at the center can then be 
replaced with a magnetic conductor as shown in Figures 5 and 6. For the difference mode, 
the electric field component parallel to the x -z plane at the center of the structure is zero. 
The x -z plane at the center can then be replaced with an electric conductor. 

Magnetic Current Sources 

The moment method approach for this problem will be to solve for the tangential 
magnetic field in the aperture. Because the tangential electric field is zero on the 
conducting screen that separates the two regions, this approach is best formulated using 
magnetic current sources instead of electric current sources. Since magnetic current 
sources are an unfamiliar topic with most people, this section will describe the properties 
of magnetic current sources. 

Since magnetic charge has not been found to exist, a magnetic current is defined 
by the Equivalence Principle. As shown in Fig 7a, a set of sources produces a field, E and 
H. A imaginary boundary is now drawn around the sources. The Equivalence Principle 
states that the same field, E and H, will exist outside the boundary if there is zero field 
and no sources inside the boundary but the boundary is coated with equivalent surface 
currents as shown in Figure 7b. These sources are: 

Js = Ii xii 

(1) 

where: 

(2) 

and: 

(3) 


The time dependence assumed is eirot. 

E,H 1t 
E,H ,~------f:. J s= nxH..------. Ln 

",­
,/ "'­

I E,H "'\.
';i1 ) (' ~ -)
\.. ources /, / 

""'''-'''''''''------~~ "--------- Ms= Exn 
a. b. 

Figure 7. 

Since the fields are zero just inside the boundary we can place any material we 
want inside the boundary and not effect the fields outside of the boundary. In Figure 8a, 
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- the boundary is replaced by an electric conductor (Etan == 0) which shorts out the electric 
current J s. Likewise. in Figure 8b, the boundary is replaced by a magnetic conductor 
(Htan == 0) which shorts out the magnetic current Ms-

E,H ~ 

Js== ,~,,,,.,.,.,_,,,n . 

Zero Field ~,.\ 
'", 

" Magnetic ,,1 
~'~I--'.,.,.,.'Conductor *,<tfIJ-' 

a. b. 
Figure 8. 

Consider the case of Figure 3a. Equation 2 reduces to: 

VxH jroE (4) 

From the Continuity equation between electric charge and electric current. if there is no 
electric current, there is no electric charge. If there is zero electric charge, the divergence 
of E is zero. When the divergence of E is zero, an electric vector potential can be defined 
as: 

- 1 - ­E --VxF (5) 
E 

With the appropriate choice of gauge, Maxwell's equations can be combined into: 

(V 2 + 1(2)? == -EM 
(6) 

1<:2 ro2~ 

The magnetic field is given as: 

H=- jro (1(2p+V(V .p)) (7)
1(2 

Equation 6 can be solved by Green's function techniques where: 

(V2 + 1(2 p(rlr/)= -Eo(r - r/) (8) 

and: 

(9) 
v 

If the magnetic current is a surface current as given in Equation 3. then the magnetic field 

- is given as: 
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- (10) 

We will define the right hand side of Equation 10 as an operator on Ms that produces 
H(r). That is: 

(11) 

where k denotes whether the field is for Region I (k=l) or Region II (k=2). 

The Theory of Moment Methods 

Using the Equivalence Principle, the fields in Regions I and II of Figure 5 will 
remain unchanged if the aperture is replaced by conducting screen coated with an 
equivalent magnetic current source as shown in Figure 9. 

Beam------------------.~ y~ 
z 

Region I 

y=ORegion II 
M =-E X Y ~ 

s t ~ 
Aperture 

Figure 9. 

The magnetic current source in Region I is: 

Ms =EtXy (12) 

where Et is the tangential electric field that existed in the aperture before it was replaced 

with conducting screen. To guarantee continuity of the tangential electric field in the 
aperture, the equivalent magnetic current source in Region II is: 

(13) 


The tangential magnetic field in Region I just above the aperture is given as the sum of 
the incident field due to the beam with the aperture replaced by conductor and the 
magnetic field due to the equivalent magnetic current source. That is at y=O: 

H(l) - H(ine) + jj(l)(E xy~) (14)t - tIt t 

It will be assumed that the incident magnetic field can be determined analytically or by 
other methods. The tangential field in Region II just below the aperture at y=O i~ -
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iI(2) - iI(ine) + ii(2) '-E X y")
t~ (15)t-t 2 t 

Continuity of the tangential magnetic field through the aperture requires: 

-(1) _ -(2) 
(16)H t -H t 

which results in the following equation: 

H(ine) _HOne) -ii(l)(E xyA)+ii(2)(E xyA) (17)t 2 t 1- t ~ t t ~ t 

This is the key equation of the moment method. Since H(inc) is known, this equation can 
be inverted to determine Et in the aperture. Because Equation 17 is an integral equation, it 
is best solved by numerical methods. Let the tangential electric field in the aperture be 
given by: 

(18) 
n n 

where Sn(x,z) and 'Vn(x,z) are a set of orthogonal functions. Equation. 17 can be turned 

into a matrix equation by multiplying it by a set of orthogonal weighting functions <Pm(x,z) 
and integrating over the entire x-z plane. The following matrix elements are defined: 

(<Pm IH~k)1 Sn) = H(<Pm(X, z)H~k)(zSn (x,z))~XdZ (19) 
x,z 

(20) 

x,z 

(<Pm IH~nc)i) = H(<Pm(X,Z)H~nc)i (x,z)~xdz (21) 

x,z 

Equation 17 becomes: 

(22) 

($m IH~nC)1H$m IH~nC)2) =~(t ($m IH~k)I"'n) fZU -~(pPm iH~k)16n)fXU 
(23) 

Equations 22 and 23 form a set of linear equations which can be inverted to find the 
electric field coefficients Ezn and Exn. If the electric field expansion functionS, <P and 'V.-
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- are chosen to be as close to the actual solution as possible then only a few tenns of the 
expansion will be needed and the size of the matrix to be inverted will be minimized. 

Resistive Tenninations 

The above derivation ignored resistive tenninations in the aperture. In some 
applications, the signal induced on a slot flows out of the slot to a combiner board by 
means of microstrip line on the shadow side of the conducting screen as shown in Figure 
10. This paper will model the microstrip connection to the slot as a thin film resistor as 
shown in Figure 11. 

Beam y~
II 

Region I 
' j y=ORegion II 

~--~~-Mi-'-cr-o-s-tr-iP-L-l-'n-e-------Z~O 

Figure 10. 

Beam y~z- • 

Region I 

'VV' y=O
Region II Zo 

Figure 11. Note that the resistor does not cover the entire aperture in the y direction. 

1------- V --------.1 

J 
s __~ 7 

/ 
~-------------- L--------~/ 

Figure 12. -
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Consider a thin film resistor shown in Figure 12 with a conductance/square of g 

0-1. The conductance for a uniform sheet of electric current flowing in the z direction is: 

W 
G=g (24)

L 

where W is the width and L is the length of the resistor. Now consider portions of the 
aperture shown in Figure 5 filled with some of this thin film resistor. Equation 16 
becomes: 

liP) li~2) = -g(x, z)· (Et x y) (25) 

Equation 17 becomes: 

li~inc)2 liiinC\ = ii?)(Et xy)+ ii?)(Et xy)+g(x,z). (Et xy) (26) 

Equations 22 and 23 become: 

(~m IH~nc)l)-(~m IH~nc)2) 

~[p$mIH~k)I\jIn)+($m~I\jIn)}zn -~[p$m IH~k)16n)}xn (27) 

($m IH~nc)1) -( ~m IH~inc)2) = 

~[p$m IH~)I\jIn)}z. -~[p$m 1H~)16n)+($m Igl6n)}xn 
(28) 

where: 

(29) 

x,z 

(30) 

x,z 

Transverse Slot Between Two Waveguides 

This section will examine the problem of a transverse coupling slot between two 
waveguides as shown in Figures 13 and 14. The beam flows in the upper waveguide and 
the output signal flows out of the lower waveguide. Also the lower waveguide could be 
the housing for a combiner board network for the slots. 

We will confine the slots to lie along the y direction only. Also, the width of the 
slot (Wi) will be very small compared to the wavelength of excitation. These restrictions 
will allow us to neglect the y component of electric field in the slot. Also, we will 
consider the case for an extremely reletavistic beam so that z component of magnetic- field in the slots may also be neglected. These assumptions reduce Equations 27 and 28 
to: 
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Beam .. w. y~-
Region I .....-¥ 

---- ---- ---- z 
Region II Slot i-I Slot i Slot i+ I 

Figure 13. Side long view ofcoupled waveguide geometry. 

lkam.
@lb
-2~ 

, vL 
x ..-c 

b 11
II 

.. 
Figure 14. Head on view ofcoupled waveguide geometry 

In the absence of the coupling slots shown in Figure 14, the fields inside the waveguides 
can be expanded as sum of all the waveguide modes. 

(32a) 
n 

E- = LC~(etn -ezn ~j~nz (32b) 
n 

(32c) 
n 

li- = LC~(-htn +hzn ~j~nZ (32d) 

- n 
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Consider a source inside a volume v surrounded by a surface So in a waveguide as shown 
in Figure 15. 

t-

I 
r 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I t +
I--------'""'" .......... 


.......... 

.......... 


..... 

z'- e z' Z'+e 

Figure 15. Elemental volume in waveguide containing sources. 

For two independent sets of fields and two independent sets of sources, the Lorentz 
reciprocity theorem states: 

#~a xlib _Eb xHa ).iidS 
. So 

= JJJ(Ea .jb _lia .rVib Eb.]a +Hb .rVia ~v 
(33) 

v 

Let the a field be the field due to the sources and the b field be one of the reverse 
traveling waveguide modes. 

-a -Ea =E H =H j 
(34) 

Eb = fe -e \j!3mz lib =f_h +h \ j!3mz jb =0 rVib=0 ~ tm Zm F \; tm zm F 
Substituting Equation 34 into Equation 33 and using the facts that the tangential electric 
field on the walls of the waveguide are zero and that the waveguide modes are 
orthogonal, the mode coefficients of Equation 32 for the positive going field are: 

(35) 

where: 

Pm ~ JJ (etm x htm ). 2dS (36) 

St 
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.- If the b field is now set equal to one of the positive going waveguide mode, the mode 
coeffcients for the negative going field is: 

We have already stated that y component of the electric field in the slot will be neglected. 
Also we will separate the y dependence and the z dependence of the electric field in each 
slot so that the tangential electric field in all of the slots is written as: 

(38)E,lots =z:p.; (z{~Ezi.l ";,1 (xlJ 
Where the I index indicates the slot number and the I index indicates the slot-mode (to be 
defined later). This is equivalent to specifyfing the expansion function in Equation 18 to 
be: 

(39) 

For the time being let ~(z) be equal to the Dirac delta function o(z-z'). The magnetic 
current source due to slot I and slot-mode 1 in the upper waveguide is: 

M'l -xE I O(Y)~,1 (x)o(z - z') (40)1, Zi 

Using Equations 32, 35 and 37, the y component of the magnetic field is: 

- I -j~nlz-z1HX' - -EZ'I Cn'l hx (x, y)e . (41) 
1,J I, I, n 

n 

where: 

cn'J =_I_Jh x (x',O)O:i ,(x')dx' (42) 
I, 4P n ' 

n x 

. Now, integrating over z': 

H .\ (x, y, z) = -Ez.\ '" cn.Jh x (x, y)JAi (z')e-j~nlz-z'ldz' (43)x1, 1,.L.... I, m 
n z· 

We will use Galerkin's approach and let the weighting function: 

$m(x,z) =$p,r(x,z) =o,p,r(X)Ap(Z) (44) 

Multiplying Equation 43 by Equation 44 and integrating over y and z, we find: 

(<Pp,r IIIxl"'i,l) =-I4Pncnp,r Cni,l J Ap(Z) J Ai (z')e-j~nlz-z'ldz'dz (45) 
n z ~ 

The double integral in Equation 45 will be defined as: 
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W·f. =fA (Z)fA,(z')e-jl3nlz-z1dZ'dz (46)I n(,p P I 

Z z' 

where Wi is the width of slot i in the z direction. Equation 45 becomes: 

c (47)(</> IH I"I. 1) = -4W· "'" P c fp,r x 't'l, 1 £..J n np,r nj,l nj,p 
n 

If the slots are much narrower than a wavelength in the Z direction, we can use the step 
function for the A function. 

Aj(z)=1 for Iz -zil< ~j 

Aj(Z)=O for IZ-Zjl> ~i (48) 

For p. i, Equation 46 becomes: 

(49) 

Forp=i: 

-
 (50) 


Assume that an infinitely narrow (in the y direction) resistor is placed across slot.!. The 
conductance density for the resistoris: 

(51) 

Because ~ and Ap only overlap when i=p, the matrix element due to the resistor is: 

(</>p,r Igi 'Vi,I) 8i ,p a (x L.. (x ) (52)W. R- p,r Rj Pl,I Rj 
1 I 

Relativistic Beam Current In A Waveguide 

Because of it's high energy, a relativistic beam can be thought of as a current 
source. A small piece of the beam located at Xb,yb, has a current density of the form: 

(53) 


The factor of % is results from exploiting the method of images. The y component of 
magnetic field in the waveguide can be found using Equations 32,35-37: 
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(54) 

Equation 54 must be multiplied by the z dependence of the beam current density and 
integrated: 

Hinc( ) = _ ib L eZn (Xb, Yb)h (. ) ooJ -jKZ' -jl3nlz- z1d ' 
x x,Y,z x x,Y e e z (55)

2 4P n n n -00 

where: 

K - (56) 
c 

Equation 55 becomes: 

(57) 

The matrix element on the left hand side of Equation 31 is found by evaluating Equation 
57 at y=O and multiplying the result by ~.r and integrating: 

A ( )/ I inc) - ib [KWp }-jKZp" 2j~n--2WpSa -2­\<l>p,r Hx ~cnp.rezn xb,Yb ~n2-K2 (58)-
Waveguide Mode as the Incident Field 

Consider the case where the incident field is a waveguide mode. 

H~c (x, Y, z) =hxnO(x, y)e -jl3noz (59) 

Using Equation 44, the left hand side matrix element is: 

(~p,r IH~nc) ~l[e-j~"O'A.p(z)dzIIhxnO(x.O)"p,,(x)dx J (60) 

Using Equation42 Equation 60 becomes: 

/ <l> IHinc) 4W P c sa[~noWp }-jJlnozp (61)\ p,r x p nO nOp,r 2 

Mode Power 

Once Equation 31 is solved, the coupling coefficients for the waveguide modes 
shown in Equation 32 can be determined. The magnetic current source for the lower 
waveguide of Figures. 14 due to the electric field in the slots is: ­-
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- M = 'O(y)t ( A.j (z)~>Xi,l (x)Ezl,I J (62) 

Substituting Equation 62 into Equation 35, the forward and reverse coupling coefficients 
are: 

c±1 
m upper 

(63) 


The power in mode m is given by the Poynting Vector: 

(64) 


Using Equations 32 and 36, Equation 64 reduces to: 

p,* =lc~12Re{Pm} (65) 

Pickup Transfer Impedance 

This section will develop a definition of transfer impedance that can be used to 
compare the waveguide design to cooling arrays that are built with conventional pickups. 
The difference mode power is: 

1 1_p --z± Ib L" J2[ J2 (66)
2 dtotal - 2 d pu ( 2 d/2 

where d is the transverse height of the beam pipe and the If2 factor in the front of the right 
hand side of Equation 66 is because ib is a peak current ( not rms.) The left hand side of 
Equation 66 is just the power flowing out of one of the waveguides. Using Equations 65 
and 66, the impedance of the array becomes: 

(67) 


The sum mode power is: 

.!.p _.!. ± (ib 12 (68) - 2 Ltotal - 2 ~pu 2) 
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The sum mode impedance of the array becomes: 

~Z± =C~~2Re{Po} (69) 
Lpu e~ ) 

Kicker Transfer Impedance 

The definition of the a kicker impedance is given as: 

[&PC J 
R _ 1 q 

(70)
k -"2 Zk 

where Apc is the change of momentum through the kicker (either longitudinal or 
transverse), q is the charge of the antiproton, and Pk is the total kicker power. For a 
particle travelling in the +z direction. 

L 

to+~Ii L \ 
Ap= f ~l z=c{t-to)-2",t rt (71) 

to 

where F(z,t) is the force on the particle and L is the length of the array. Since the time 
dependence of the force is dOlt, Equation 71 becomes: 

L 

2 
Apc = fF{z pjlCldz (72) 

L 

2 

where dt=dzlc and have defined to=-U2c. The force on the particle comes from the 
electromagnetic wave of the kicker: 

F=q(E+c(zx~)) (73) 

The change in longitudinal momentum becomes: 

(74) 


The change in the transverse momentum becomes: 

Apcl = . 

--y = f(Ey +llHx~JlCldz (75) 


q -00 

For a particle travelling in the -z direction:-
16 
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~pcl oof . 
Z - E -JKZd - --- ze z (76) 

q -00 

(77) 

The integrals in Equations 74-77 can be evaluated by using reciprocity. The reciprocity 
law stated in Equation 33 can be rewritten as: 

~pcly 

q 
-00 

(78) 

where p designates the pickup fields and sources, and k designates the kicker fields (there 
are no kicker sources.) The geometry that defines the surface So and the volume V is 
shown in Figure 16. 

Region I 
--...:: ---

Kicker Wave Port 3 ...+··....·Kicker Wave 
..-·j·.........Pickup Wave 
 Region II Pickup Wave-m._~~'" 

Kicker Input 
Termination 

Pickup Output 

Figure 16. Waveguide pickup showing surface for reciprocity integral 

For a kicker, the fields at the 4 ports are: 

Ef = aketo (Sl,1 +1) E~ = 0 

Hf = akhto (S1,1-1) H~ =0 

- - 'SjS =EbeJE~ =Ebe- E~ 

=HbejSH~ =Hbe-jS H~ 

(79) 

where Eb and Hb are the beam fields in an unperturbed beam pipe and SI,I and S3,1 are the 
scattering parameters of the kicker. It was assumed that the absorber kills the pickup and 
kicker fields at ports 2 and 4 and that only the fundamental mode propagates in ports 1 
and 3. The left hand side of the reciprocity integral of Equation 78 is zero for ports 2, 3, 
and 4. The integral is non-zero only at port 1. Equation 78 becomes: 

4POakapf = fff(Ek •JP Hk • hlP ~v (80) 
v 
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If the beam current density is chosen to be: 

jP =z	ib o(x - Xb)o(Y Yb~-jKZ (81)
2 

which is the description of a beam travelling in the +z direction. Equation 80 becomes: 

(82) 
-OQ 

Using Equations 70 and 76, 

(83) 

Since the total kicker power is equal to the sum of the power in the upper and lower 
waveguides of Figure 2: 

~Pk Uk2po (84)
2 

The pickup coefficient in Equation 83 can be found from Equation 69. Equation 83 
becomes: 

(85) 

For the transverse case, we need two transverse current sources: 

(86) 

(87) 

Also define: 

(88) 

Note that the impedance in Equation 80 is not the same impedance as defined in Equation 
66. Substituting Equations 84, 86-88 into Equation 80 and using the definition of the 
kicker impedance found in Equations 70 and 77: 

(89) 

To solve for the vector element on the left hand side of Equation 31, the same procedure 
that was developed in Equations 53-58 is used. First, the Green's function for the 
following sources is found: 

(90) 
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hlP = x11~O(x - Xb)8(y - Yb)8(Z- z') (91)
2 

Using Equation 37: 

J+ 1 ib ( ~+ 'R Z,C - =---e x Y -J ....m (92)
m 4P 2 Ym b' b 

m 

M+ 1 ib ~+'R'C - =±--11-hA ( x Y -JPmZ (93)m 4P 'I 2 Xm b' b 
m 

where the J,M superscripts indicate whether the coefficient is for the electric or magnetic 
current source, respectively. The plus/minus sign in the superscript indicates whether the 
solution is for z>z' and z<z', respectively. The transverse magnetic field in a waveguide 
is proportional to the transverse electric field: 

h =_Zwavee (94)Xm m Ym 

Equation 93 becomes: 

M+ 1 11 ib ( +'R IC - =+-- '. e x y \..-JpmZ (95)
m 4P Zwave 2 Ym b' bIV 

m m 

The magnetic fields for the point current sources are: 

HH (x y z Zl)= ±_1_ ib e (Xb yb'U: (x y\.. -jl3m!z-z'! (96)Xm ' , , 4P 2 Ym ' )lI xm ' ,IV 
m 

HM±(x Y z z')= 1 11 ib )6 ( \..-jl'm!z-z'!A ( 

x ", 4P wave 2eYm xb,Yb Xm x,YIV (97) 
m m Zm 

The magnetic field due to the extended electric beam source of Equation 86 is found by 
integrating Equation 96: 

Z ~ 

H~ (x,y,z)= fH~+ (x,y,z,z,~-j1iZ'dz'+ fH~- (x,y,z,z,~-j1iZ'dz' (98) 
m m m 

-00 Z 

J _ 1 ib ( u: ( )H (x,Y,z)----eA 

Y xb,YbP1x x,Y
Xm 4P 2 m m m 

(99) 

-[e - j ~mz lej(Pm -Kkdz' - ejPmz[ e - j(Pm+KkdZ] 

Using the radiation condition, the integrals vanish at infinity. Equation 99 becomes: 

( ) A (J __l_ib A 2j1C \..-j1iZ
H (x,y,z)- ey xb,Yb 2 2hx x,YIV (100) 

xm 4Pm 2 m 1C -~m m-
19 




4/15/98 
7:39PM 

The magnetic field due to the magnetic current is: 

HM 1 ib " ( ) 11 2j~m h ( \..-jKZ (101)
x (x,y,z) -4P -2eYm xb,Yb wave 2 A 2 xm x,YF' 

m m Zm K -Pm 

The total magnetic field is the sum of Equations 100 and 101: 

. . K- ~ve~m 
H ( ) - J Ib ) Zm h ( \..-jKZ (102)A ( 

xm x,Y,z - 2P 2 eYm xb,Yb K2-~m2 Xm x'YF' 
m 

The matrix element on the left hand side of Equation 31 is found by evaluating Equation 
102 at y=O, summing the result over all the m modes, multiplying this result by <Pp.r and 
integrating over x and z: 

(103) 

Summary of Equations 


The following matrix equation is to be solved for the electric field in the slots. 


(104) 

where'Vn (and <Pm) are expansion functions for the field in the slot: 

'Vn (x, z) = 'Vi,1 (x, z) = <li,1 (X)Ai (z) 

Ai (z)= 1 for 

Ai (z)= 0 for (105) 

The right hand side matrix elements are: 

(106) 


where: 

(<Pp,r IHxl'Vi,l) = -4Wi .2, Pncnp,r cni/nj,p 
n 

(107) 

Pm = ~ JJ(etm Xh tm ). zdS 
SI 

(l08) 
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(109)-
For p. i,: 

For p=i: 

(110) 


(111) 


For a difference mode pickup, a sum mode pickup, and a sum mode kicker, the vector 
elements on the left hand side of Equation 104 are: 

( mp,r\ Hixnc)= W S (KWp }-j1\2P L "( ) 2j~n'I' p a -- cn ez Xb,Yb 2 2 (112)
2 2 p,r n A_ 

n ~n K 

For a difference mode kicker, the vector elements are: 

. (KW } , K- Z~ve ~m
I IHinc)-2,lb W S P -J1\2p",", " ( ) m (113)\<Pp,r x - p a -2- ~cmp.reYm xb,Yb K2-~m2J2 

Once the matrix equation Equation 104 is inverted for the electric field in the slots, the 
amplitude of the waveguide modes flowing out of the structure can be calculated, The 
mode coefficients for the output (lower) waveguide is: 

where the top sign is for the signal traveling in the + z direction (for a beam traveling in 
the +z direction) and the bottom sign is for the signal travelling in the -z direction. Note 
that this formula is only valid for the regions upstream and downstream of the slots (not 
inside the slot region.) 

The sum mode pickup impedance is defined as: 

(' J2p Ib Z (115)
l:PUtotal 2 l:pu 

where ib is a peak current (not rms.) The sum mode pickup impedance is given from the 
power travelling in the fundamental waveguide mode: -
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(116)~~PU =(;) 

For the difference mode pickup, the impedance is defined as: 

' )2( )2P -!.!L Lz (117)(Llputotal - 2 d/2 Llpu 

which results in: 

(118) 

A kicker impedance is defined as: 

(ape J 
R _ 1 q (119)
k - 2 Zk 

From reciprocity, the sum mode kicker impedance is: 

2ZEp =ZEk (120) 

where the signal and beam directions shown in Figure 16 is followed, For the difference 
mode kicker, the electric field in the slots and the hence the mode coefficients is 
calculated using the vector described by Equation 113. The kicker impedance is bec'omes 

(121)~zt =2(~ 


Waveguide Modes For A Rectangular Waveguide 

We will assume an electric vector potential of the form: 

F == xFx (x, y)e-j~m.nz (122)
m,n 

Equations 5 and 7 become: 

e(x,y)x =0 (123a) 

(123b) 
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(123c) 

2 
hex, Y)x = j~ [K:2 + a bx (123d)

2K: ax r 
" jco
h(x,y)y =-2"a a (123e)

K: x Y 

h( ) = _ co~m,n aFx (1231)x, y z 2 aK: x 

The boundary conditions require that: 

By =0 at x = ±al2 (124a) 

Bz =0 at y =0, b and at x = ±al2 (124b) 

For simplicity, we will consider the beam centered at x=O. This will require Fx to be even 
in x. The electric vector potential that satisfies these equations and constraints is: 

F 1 E (2m+l)1t) (n1t) (125)x = 0 cos x cos - y 
m,n J'~ llc a bm,n 

. (126) 

Equation 67 becomes: 

ex =0 (127a)
m,n 

(127b) 

(127c) 

(127d) 

(127e) 
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h = _i((2m + 1)1t \0 sin((2m + 1)1t x)cos(n1t y) (127f)z 
m,n 11K a r a b 

Equation 36 becomes: 

(128) 


where dn=1 for n=O and dn =2 for n- O. The denominator of Equation 128 can be 

considered the power impedance of the waveguide. 

The wave impedance is: 


(129) 


so that the power impedance is: 

zpower =2d b Zwave (130)m,n n a m,n 

Because we are considering only even modes in x and that the z component of electric 
field must vanish at the ends of the slot (x = :tL/2), a reasonable expansion function for 
a(x) is: 

(21 + 1)1t J . (131) ai,l (x) = cos Li x( 

Equation 42 becomes 

_ 1 dn 2Li 21 + 1 ((2 1) 1t Li 1)c ----- cos m+ --+ 1t (133) 
ni,l E ab 1t (L )2 2 a 

o (2m + 1)2 -;- - (21 + 1)2 

Calculation of the electric field along the length of the waveguides. 

We can assume that each one of the slots in Figure 13 to be a magnetic current 
source. The total field in the waveguide will be a sum of the fields resulting from each 
slot. For a single slot and slot mode, the magnetic current source is: 

(134) 


Using Equations 37, the waveguide mode coupling coefficients are: 
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C± =±E _ 1 fh (x'O~- (x,ux'fA-(z,\...±jrlnz'dz' (135)
nj,l Zl,l 4P, Xn ' JUI,1 JU I F 

n x Z 

If the observation point is at the center of the waveguide (x=O) then Equation 135 
becomes: 

+E J'l. ( .\...±jrlnz'd • - z- ICn- I Ai z F z -- (136)
1, 1, 

Z 

W:Z<Z___IFor: 
I 2 

Equation 136 becomes: 

W
Z-+_I 

I 2 

f 
-A' - -)1-' Z •Cn- =-Ez-Icn- e . n dz (137)

I,I 1, I,1 
Z___ Wl 

I 2 

C- - -WoE (~nWi }-jrlnZi (138)n-I- I Z-lcn-ISa 
I, It 1, 2 

The electric field is found from Equation 32: 

E· I -W-E. '" c . sa(~nWi )e -e \jrln{z-zd (139)I, I ZI,I""" nl,l 2 Yn Zn P 
n 

W­
For: z>z. +_1 C~_I. =0

1 2 I, 

The electric field is: 

E.• =W·E. '" c . sa(~nWi)e +e \-jrln(z-zd (140)I, 1 zl,l""" nl,1 2 Yn Zn P 
n 

For: 

z 
C+ -E f j~nz'd · (141)- z· ICn- I e zni,l I, I, 

WiZ--­
I 2 

z·+Wj 

C- E c 
I f2 

e-jrlnz'dz' (142)n- I = - z· I n' 11, 1, I, 

Z 

The electric field for the forward and reverse waves at x=O is: 
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·l3nWj 
e-J-- -jl3n(z-Zj)2 e 

(143) 
j~nWi 

(144) 

The total electric field for the region enclosed in the slot is the sum of Equations 143 and 
144: 

(146) 

..-.- In summary: 

WiFor: 
2 

E· I e yA = - W· E . "" c . sal ~nWi )e e y" \ jl3n (z-Zj) (147)
I, 1 ZI,I"'- nl,1 2 Yn P 

n 

E·1eZ=W·E. ""c. sal~nWi)e .z\jl3n(z-zJ (148)
I, 1 z},I"'- nl,1 2 Zn P 

n 

(150) 
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For: 
W· 

Z>Z. +_1 
1 2 

E.\eY=W·E. ~C. sa(~nWi)e
1, 1 Zt,l £.J nl,l 2 Yn 

n 

eyA\-jPn(Z-Zj)P (151) 

(152) 

-
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